17704692435
有电子文本×
购买标准后,可去我的标准下载或阅读

3.1 Prior to being presented in court, a foundation must be established showing how evidence was collected, who collected the evidence, where it was collected, who has had custody of the evidence, how the evidence has been processed, and when changes of custody have occurred.3.2 Following the procedures outlined in this practice can serve to protect the chain of custody of the evidence while the evidence is at the forensic laboratory. Refer to Practice E1188 for chain of custody information and procedures prior to submission to the laboratory.1.1 This practice describes procedures and techniques for a forensic science laboratory to protect and document the integrity of items of physical evidence with respect to suitability for scientific testing, and admissibility as evidence in litigation.1.2 This practice recommends generally accepted professional principles and operations, although the facts and issues of each situation require consideration, and frequently involve matters not expressly dealt with herein. Deviations from this practice should be based on specific articulable circumstances.1.3 This practice offers a set of instructions for performing one or more specific operations. This standard cannot replace knowledge, skill or ability acquired through appropriate education, training, and experience and should be used in conjunction with sound professional judgment.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:515元 / 折扣价: 438

4.1 Trace amounts of water may be detrimental to the use of chlorine in some applications. The amount of water in the chlorine must be known to prevent problems during its use.1.1 This test method is designed for the on-line determination of the content of water in liquid chlorine in the concentration range of 0.5 to 15 mg/kg (ppm).1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.3 Review the current Safety Data Sheets (SDS) for detailed information concerning toxicity, first aid procedures, and safety precautions.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 7 and Note 3.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:590元 / 折扣价: 502

6.1 This guide can be used to quantitatively assess the intensity of specific attributes of hair odors resulting from hair-care products.6.2 This guide may be utilized for product development, research guidance, and quality control.6.3 These are suggested procedures and are not meant to exclude alternate procedures that may effectively provide the same or similar results.1.1 This guide covers standardized procedures for the quantitative sensory assessment of fragrance/odor intensity or attribute intensity of fragrances in hair-care products through all stages of use (point of purchase, lather, in use, wet hair after rinse, and dry hair) under laboratory conditions with trained assessors.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:590元 / 折扣价: 502

5.1 This test method is a standard procedure for determining the air flow characteristics of various components of the window system under specified air pressure differences at ambient conditions.NOTE 3: The air pressure differences acting across a building envelope vary greatly. The factors affecting air pressure differences and the implications or the resulting air leakage relative to the environment within buildings are discussed in the literature.4 ,5,6 These factors should be fully considered in specifying the test pressure differences to be used.5.2 Rates of air leakage are sometimes used for comparison purposes. Such comparisons may not be valid unless the components being tested and compared are of essentially the same size, configuration, and design.1.1 This test method is a modified version of Test Method E283/E283M, and provides a standard laboratory procedure for determining air leakage separately through the face and sides of exterior windows, curtain walls, and doors under specified differential pressure conditions across the specimen. The test method described is for tests with constant temperature and humidity across the specimen.NOTE 1: Detailing buildings with continuous air barriers requires that the air barrier plane in a window system be clearly defined. When special circumstances dictate that the air barrier be sealed to the window frame at a location other than that used to seal the specimen to the test chamber in this test method, additional laboratory testing may be required to clarify potential paths of air flow through the sides of the window frame. The adapted testing procedure described herein is intended for this purpose.1.2 This laboratory procedure is applicable to exterior windows, curtain walls, and doors and is intended to measure only such leakage associated with the assembly and not the installation. The test method can be adapted for the latter purpose.NOTE 2: Performing tests at non-ambient conditions or with a temperature differential across the specimen may affect the air leakage rate. This is not addressed by this test method.1.3 This test method is intended for laboratory use. Persons interested in performing field air leakage tests on installed units should reference Test Method E783. Test Method E783 will not provide the user with a means of determining air flow through the sides of tested specimens.1.4 Persons using this procedure should be knowledgeable in the areas of fluid mechanics, instrumentation practices, and shall have a general understanding of fenestration products and components.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statement see Section 7.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:590元 / 折扣价: 502

4.1 This test method can be extended to use any material that has the necessary nuclear and activation properties that suit the experimenter's particular situation. No attempt has been made to fully describe the myriad problems of counting techniques, neutron-fluence depression, and thick-foil self-shielding. It is assumed that the experimenter will refer to existing literature on these subjects. This test method does offer a referee technique (the standard gold foil) to aid the experimenter when they are in doubt of their ability to perform the radiometric technique with sufficient accuracy.4.2 The standard comparison technique uses a set of foils that are as nearly identical as possible in shape and mass. The foils are fabricated from any material that activates by an (n, γ) reaction, preferably having a cross section approximately inversely proportional to neutron speed in the thermal energy range. Some of the foils are irradiated in a known neutron field (at NIST) or other standards laboratory). The foils are counted in a fixed geometry on a stable radiation-detecting instrument. The neutron-induced reaction rate of the foils is computed from the counting data, and the ratio of the known neutron fluence rate to the computed reaction rate is determined. For any given foil, neutron energy spectrum, and counting set-up, this ratio is a constant. Other foils from the identical set can now be exposed to an unknown neutron field. The magnitude of the fluence rate in the unknown field can be obtained by comparing the reaction rates as determined from the counting data from the unknown and reference field, with proper corrections to account for spectral differences between the two fields (see Section 5). One important feature of this technique is that it eliminates the need for knowing the detector efficiency.4.3 This test method follows the Stoughton and Halperin convention for reporting thermal neutron fluence. Other conventions are the Wescott convention (followed in Test Method E481) and the Hogdahl convention. Practice E261 explains the three conventions and gives conversion formulae relating values determined by the different conventions. Reference (1)3 discusses the three thermal-neutron conventions in detail.1.1 The purpose of this test method is to define a general procedure for determining an unknown thermal-neutron fluence rate by neutron activation techniques. It is not practicable to describe completely a technique applicable to the large number of experimental situations that require the measurement of a thermal-neutron fluence rate. Therefore, this method is presented so that the user may adapt to their particular situation the fundamental procedures of the following techniques.1.1.1 Radiometric counting technique using pure cobalt, pure gold, pure indium, cobalt-aluminum, alloy, gold-aluminum alloy, or indium-aluminum alloy.1.1.2 Standard comparison technique using pure gold, or gold-aluminum alloy, and1.1.3 Secondary standard comparison techniques using pure indium, indium-aluminum alloy, pure dysprosium, or dysprosium-aluminum alloy.1.2 The techniques presented are limited to measurements at room temperatures. However, special problems when making thermal-neutron fluence rate measurements in high-temperature environments are discussed in 9.2. For those circumstances where the use of cadmium as a thermal shield is undesirable because of potential spectrum perturbations or of temperatures above the melting point of cadmium, the method described in Test Method E481 can be used in some cases. Alternatively, gadolinium filters may be used instead of cadmium. For high temperature applications in which aluminum alloys are unsuitable, other alloys such as cobalt-nickel or cobalt-vanadium have been used.1.3 This test method may be used to determine the equivalent 2200 m/s fluence rate. The accurate determination of the actual thermal neutron fluence rate requires knowledge of the neutron temperature, and determination of the neutron temperature is not within the scope of the standard.1.4 The techniques presented are suitable only for neutron fields having a significant thermal neutron component, in which moderating materials are present, and for which the average scattering cross section is large compared to the average absorption cross section in the thermal neutron energy range.1.5 Table 1 indicates the useful neutron-fluence ranges for each detector material.TABLE 1 Useful Neutron Fluence Ranges of Foil MaterialFoil Material Form ≈ Useful Range (neutrons/cm 2)Indium pure or alloyed with aluminum 103 to 1012Gold pure or alloyed with aluminum 107 to 1014Dysprosium pure or alloyed with aluminum 103 to 1010Cobalt pure or alloyed with aluminum 1014 to 10201.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:646元 / 折扣价: 550

5.1 Paper machine rolls can range in size from 2.4 to 9 m [8 to 30 ft] long, with a shell thickness of from 12.5 to 75 mm [0.5 to 3 in.,] and 300 to 1200 mm [12 to 48 in.] diameter. Depending on purpose, paper machine rolls can weigh as little as 60 000 kg [13 000 lb] to as much as 27 500 kg [60 000 lb].5.2 If indications are found during this procedure it can be repeated, with additional sensors to refine source location accuracy.5.3 Removal of rolls for traditional NDT examination may be impractical and may not be sensitive enough to locate small defects.5.4 Traditional AE examination, whereby the roll is subjected to load greater than service load to detect crack extension, risks damage to the roll and is best employed as a follow-up NDT examination.5.5 Manual rotation through a full revolution subjects existing cracks to tensile and compressive forces which can open and close existing cracks, and cause friction at the crack surfaces.5.6 Excess background noise (overhead cranes, nearby maintenance activities) may distort AE data or render it useless. Users must be aware of the following common sources of background noise: bearing noise (lack of lubrication, spalling, and so forth), mechanical contact with the roll by other objects, electromagnetic interference (EMI) and radio frequency interference (RFI) from nearby broadcasting facilities and from other sources. This practice should not be used if background noise cannot be eliminated or controlled.5.7 Other Non-destructive test methods may be used to evaluate the significance of AE indications. Traditional AE has been used to confirm the existence of the AE indication and fine tune the location. Magnetic particle, ultrasonic and radiographic examinations have been used to establish the position, depth and dimensions of the indication. Procedures for using other NDT methods are beyond the scope of this practice.1.1 This practice provides guidelines for acoustic emission (AE) examinations of non-pressure, paper machine rolls.1.2 This practice utilizes a slow rotation of the roll to produce a full load cycle where load is provided by the weight of the roll suspended from its bearings or other journal support mechanism(s).1.3 This practice is used for detection of cracks and other discontinuities in rolls that produce frictional acoustic emission during rotation.1.4 The AE measurements are used to detect or locate emission sources, or both. Other nondestructive test (NDT) methods must be used to evaluate the significance of AE sources. Procedures for other NDT techniques are beyond the scope of this practice. See Note 1.NOTE 1: Traditional AE examination, magnetic particle examination, shear wave ultrasonic examination, and radiography are commonly used to establish the exact position and dimensions of flaws that produce AE.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:590元 / 折扣价: 502

1.1 This specification is intended to provide a basis for identification of non-removable permanent foaming fixatives as a long-term measure used to immobilize or isolate radioactive contamination, or both, minimize worker exposure, and to protect uncontaminated areas against the spread of radioactive contamination.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:515元 / 折扣价: 438

5.1 This test method is intended as a referee method for compliance with compositional specifications for impurity content. It is assumed that all who use this procedure will be trained analysts capable of performing common laboratory practices skillfully and safely. It is expected that work will be performed in a properly equipped laboratory and that proper waste disposal procedures will be followed. Follow appropriate quality control practices such as those described in Guide E882.1.1 This test method covers the determination of silica in fluorspar from 0.5 % to 10 % by mass.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:515元 / 折扣价: 438

This specification covers the materials, dimensions, and assembly of steel and aluminum rat guards intended to prevent rats from boarding ships by way of mooring lines. Rat guards shall be classified into three types, namely: Type I, Type II, and Type III. Type I rat guards shall be made of the prescribed aluminum-alloy sheet metal; Type II rat guards shall be made of the prescribed galvanized sheet steel; and Type III rat guards shall be made of either of these specified materials. Types I and II rat guards shall be provided with the following: hinge bolt, guide and tie rope, and grommet. Type III rat guards shall consist of two half disks and two half tapered sleeves and the hinge bolt provided with each rat guard shall consist of a commercial hexagon head bolt, nut, and washer, all made of corrosion resistant steel. The dimensional requirements such as thickness of disk, sleeve, and guide for galvanized steel or aluminum sleeve of Type III rat guard are specified. Type I and Type II rat guard configurations and Type III rat guard assembly are detailed and illustrated.1.1 This specification covers the materials, dimensions, and assembly of steel and aluminum rat guards.1.2 Rat guards are intended to prevent rats from boarding ships by way of mooring lines.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:590元 / 折扣价: 502

3.1 Expiration dates are often marked on the packages of perishable products to indicate the presumed end of their shelf lives. Since the shelf lives of most perishable products are temperature dependent, the expiration date is determined by assuming the product will be kept within a prescribed temperature range for its entire life. A problem with this method is that there is no way to determine if the shelf life of a product has been shortened by exposure to a higher temperature. A time-temperature indicator solves this problem when attached to the package because it reaches its end point sooner when exposed to a higher temperature.3.2 In order to directly indicate the end of the shelf life, the time-temperature indicator characteristics should be matched as closely as possible to the quality characteristics of the product. When kept at the standard storage temperature for the product, the indicator should reach its end point at the same time as the product's shelf life. In addition, to determine the accuracy of the match at other temperatures, the change of shelf life with temperature should be known for both the product and the indicator. The Arrhenius relationship is a common and convenient method of describing the change of shelf life with temperature. In cases where it is not applicable, individual time-temperature points for the product may be established and an approximate correlation with the TTI obtained.3.3 When attached to the package of a perishable product, a time-temperature indicator may supplement, or in some cases replace, the expiration date code. The addition of a TTI provides a greater level of confidence that the perishable product is within its shelf life because it responds to the actual temperature conditions to which the product has been exposed.3.4 In the case of minimally processed refrigerated foods, the rapid growth of pathogenic bacteria at elevated temperatures may pose a serious health hazard even before the deterioration of the quality of the product becomes apparent to the consumer. In this case, an expiration date may be used for storage at the standard temperature, while a threshold-temperature TTI is used to indicate the exposure to temperatures at which growth becomes measurable. It is also possible to use a dual-function TTI, in which case the standard TTI would indicate the shelf life at the correct storage temperature while the threshold-temperature part would indicate the exposure to higher temperatures.1.1 This guide covers information on the selection of commercially available time-temperature indicators (TTIs) for noninvasive external package use on perishable products, such as food and pharmaceuticals. When attached to the package of a perishable product, TTIs are used to measure the combined time and temperature history of the product in order to predict the remaining shelf life of the product or to signal the end of its usable shelf life. It is the responsibility of the processor of the perishable product to determine the shelf life of a product at the appropriate temperatures and to consult with the indicator manufacturer to select the available indicator which most closely matches the quality of the product as a function of time and temperature.NOTE 1: Besides time-temperature indicator, TTI is also an abbreviation for time-temperature monitor and time-temperature integrator.1.2 Time-temperature indicators may be integrated into a Hazard Analysis and Critical Control Point (HACCP) plan. Appropriate instructions should be established for handling products for which either the indicator has signaled the end of usable shelf life or the shelf life of the product at its normal storage temperature has been reached.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

   电子版:515元 / 折扣价: 438

27303 条记录,每页 10 条,当前第 25 / 2731 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页  
  • 波浪
  • 波浪
  • 波浪
  • 波浪